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In this paper the dynamic mechanical behaviour of ultra-high modulus polyethylene is reported. The 
results are discussed in terms of a fibre reinforced composite model, in which the amount of fibre 
phase is related to the number of intercrystalline bridges determined from X-ray diffraction data. For 
both drawn and extruded materials a good correlation has been obtained between the plateau modulus 
at -50°C and the longitudinal crystal thickness. This correlation is given a quantitative interpretation 
in terms of the model and the increase in modulus with increasing deformation ratio is ascribed to an 
increase in continuity of the crystalline phase, The increase in tensile modulus on cooling through the 
?-process is related primarily to the change in the tensile modulus of the amorphous phase. The fall in 
modulus at high temperature, on the other hand, indicates a fall in the shear modulus of the crystal- 
line phase, which provides a satisfactory explanation of the s-process. 

INTRODUCTION 

This paper forms part of a series of publications dealing with 
the preparation and properties of ultra-high modulus poly- 
olefines. As discussed in previous papers, two processes 
have been used, drawing 1,2 and hydrostatic extrusion 3. Al- 
though these processes differ in many respects they are both 
essentially solid phase tensile deformation processes, draw- 
ing being used to produce fibres and films, and hydrostatic 
extrusion solid shapes of substantial cross-section. In each 
case ultra-high modulus material of similar structure and 
properties can be produced and it has been noted that the 
overall deformation ratio is the main factor in determining 
the mechanical stiffness 1,2. 

The main purpose of the present paper is to discuss the 
relationship between the mechanical behaviour and mor- 
phology in ultra-high modulus linear polyethylene (LPE) 
combining mechanical and structural data from both drawn 
and extruded materials. We will confine ourselves to the 
behaviour of one grade of LPE, Rigidex 50, although we 
believe that our conclusions will be relevant to other grades 
of LPE, and possibly to other ultra-high modulus oriented 
polymers such as polypropylene and polyoxymethylene. 

The dynamic mechanical behaviour of samples from a 
range of draw ratios has been determined over a wide range 
of temperatures. As in a previous publication 4 we will seek 
to relate the mechanical stiffness in a non-viscoelastic r~gime 
to the structure of the materials. In the present paper, we 
will draw upon small-angle and wide-angle X-ray measure- 
ments reported in the related publication s to provide the 
required structural information, and show that the average 
crystalline sequence length as measured by the latter tech- 
nique correlates directly with mechanical stiffness. A quan- 
titative treatment is given for the mechanical modulus in 
terms of the proportion of intercrystalline bridges, this being 
estimated from the X-ray diffraction data. Our theoretical 
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model is analogous to a reinforced fibre composite model 
but the apparent 'fibre' content of the model is determined 
at each stage of the deformation by the number of inter- 
crystalline bridges in the sample. 

EXPERIMENTAL 

Preparation of samples 
Results will be presented for R.iNdex 50, a linear ethylene 

homopolymer manufactured by BP Chemicals International 
Ltd. The weight- and number-average molecular weights 
were 101 450 and 6180, respectively and the melt flow index 
was 6. 

Ultra-oriented samples of this material were prepared 
both by drawing and hydrostatic extrusion. The prepara- 
tion details were as follows. 

Drawing. lsotropic sheets for drawing were prepared by 
compression moulding granules at 170°C and then quench- 
ing into water at room temperature. Dumb-bell samples 
with gauge dimensions 2 x 0.5 cm were cut from the sheets 
and drawn at 75°C in an lnstron testing machine at a cross 
head speed of 10 cm/min. Samples with different draw 
ratios were produced by varying the overall extension ap- 
plied i.e. the drawing time. The draw ratio obtained was 
determined from the spacing of ink marks which were 
applied to the samples before drawing. Further details of 
the drawing procedure have been given in previous publi- 
cations1, 2. 

Hydrostatic extrusion. Billets for hydrostatic extrusion 
were machined from isotropic rods, prepared by an extru- 
sion moulding technique. In this technique a cylindrical 
tube is filled from a melt extruder and then allowed to cool 
over a period of several hours in an oven maintained at 
120°C. To prevent the formation of voids in the mouldings 
it was found beneficial to stand the tubes vertically in the 
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oven to maintain a temperature gradient of about 10°C up 
the tube (the top end being hotter) and to apply a small 
pressure by placing weighted pistons in the top ends of the 
tubes. 

The technique for hydrostatic extrusion of polymers has 
been described previously a'6. In the present work a conical 
die of 15 ° semi-angle was used, the final bore diameter being 
2.5 mm. For extrusion we will define the deformation ratio 
as the cross-sectional area of the billet divided by that of the 
product. For the samples described here, the product dia- 
meter was always fairly close to the bore diameter of the die. 
All samples were extruded at 100°C. 

Characterization of samples 
The densities of the samples were determined using a 

density gradient column and crystallinity values calculated 
assuming a two phase model with Pc = 1.00 and Pa = 
0.855 g/cm 3. 

Wide-angle X-ray diffraction patterns of all samples were 
recorded on Polaroid film to enable a comparative visual 
assessment of crystallite orientation to be made. We have 
also drawn on the more detailed X-ray diffractometry data 
of the related publication to provide estimates of D002, the 
a.verage crystalline dimension in the c direction. 

Finally, small-angle X-ray diffraction patterns were re- 
corded for all samples, and the long period, L, determined 
from microdensitometer traces of the peak prot'des. 

Dynamic mechanical measurements 
Dynamic mechanical measurements in the temperature 

range -196  ° to 80°C were undertaken on all samples to 
obtain E*, the dynamic Young's modulus in the axial 
direction. All measurements were performed at 3.6 Hz. 

The technique for measuring drawn films has already 
been reported in a previous publication 4 where data for 
similar, but not identical samples, have been reported. 

For the extruded samples, a three point bend technique 
was used for two reasons. First, the loads required in 
flexure are considerably lower than those required for ten- 
sile measurements and secondly, problems had been en- 
counteredpreviously in gripping specimens for tensile tests. 

Horgan' and Arridge and Folkes a have pointed out that 
St Venant's principle in its commonly stated form does not 
apply to highly anisotropic materials. Localized stresses 
at specimen loading points (end effects) can persist for dis- 
tances of up to (E/G) 1/2 times the basic dimension (the 
diameter in this case) and can lead to appreciable errors in 
mechanical measurements if allowance is not made for them. 

In the three point bend test there is also a deflection due 
to shear, which is frequently ignored for isotropic materials, 
but which can be significant when the ratio E/G is large. 
Fortunately the errors due to both these effects can be re- 
duced to an acceptable level by using a sample of sufficiently 
large length to diameter ratio. 

Neglecting end effects and shear effects, the modulus of 
a sample in the three point bend test is given by: 

W/3 
E = ~ (1) 

48M 

where W is the load applied at the centre of the specimen; 
l is the distance between supports; 6 is the deflection at this 
point and I is the second moment of area of the specimen 
cross-section about the neutral axis. For a specimen of cir- 
cular section: 

7rd 4 
I = (2) 

64 

where d is the diameter. 
In order to minimize errors due to end and shear effects 

the apparent modulus from equation (1) was measured for 
a range of aspect ratios for the most highly anisotropic 
sample and is shown plotted against lid in Figure 1. Al- 
though the error is large at low aspect ratios it can be re- 
duced to an acceptable level (less than 1%) by using an 
aspect ratio of 160. This geometry was therefore used in 
all the tests. 

For the dynamic measurements a sinusoidal displace- 
ment was applied to the central point of the specimen by a 
scotch yoke mechanism driven at constant speed, the load 
and displacement also being measured at this point. Details 
of the electronics used to measure the phase angle between 
the load and displacement signals are described elsewhere 9. 

Because d appears to the fourth power in equation (2), 
it is necessary to make allowance for the change in speci- 
men dimensions with temperature during the experiment. 
The thermal expansion data reported by Mead and Porter t° 
for capillary-extruded rods were used for this purpose. The 
maximum correction to the observed modulus (at -196°C) 
was 13%. A small correction was also made for the changes 
in I due to thermal strain in the apparatus. 

It was found that the thermal history of the sample 
could significantly affect the measured values of tan6g in 
the low temperature (7) relaxation region. Rapid cooling 
from room temperature to below -50°C gave high tan6g 
values which drifted to a steady value over a period of 
about 1 h. Cooling fairly slowly on the other hand in steps 
of 10 ° or 20°C (to facilitate measurements) gave much 
more stable behaviour, and values of tan6E were consistent 
both going down and coming up in temperature. The latter 
procedure was therefore adopted. 

RESULTS 

Characterization 
Figure 2 shows the densities of the extruded and drawn 

samples as a function of the deformation ratio. An initial 
drop in crystallinity is observed, corresponding to the break- 
up of the isotropic spherulitic morphology. On further de- 
formation the density increases somewhat, but the overall 
change for this grade of polymer is quite small. The crystal- 
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linity of the oriented samples deduced from these densities 
is about 77%. 

The wide-angle X-ray diffraction measurements showed 
that at deformation ratios of 10 and above the crystalline 
phase is almost perfectly oriented with c-axes parallel to 
the direction of tensile strain. Quantitative measurements 
of crystallite orientation determined from X-ray diffracto- 
metry of the 002 reflections gave values for the orientation 
averages which were always very close to those for perfect 
alignment I1. 

As already mentioned, average crystal dimensions have 
been determined by X-ray diffractometry in the related 
investigation s . The results show that there is no apparent 
change in the lateral dimensions, 9200 and 9020 as deter- 
mined from the profile of the 200 and 020 reflections, 
respectively. Measurements of the 002 reflection, on the 
other hand, show that there is a very appreciable increase 
in 9002, which rises to a value of about 460 .~ at the highest 
deformation ratios. These results are summarized in 
Table 1. 

At the lower deformation ratios both drawn and extruded 
samples showed clear small-angle X-ray diffraction (SAXS) 
patterns of the two point type, though the intensity de- 
creased very considerably with increasing deformation. 
Values of the long period, L, deduced from the SAXS data 
are also shown in Table 1. For both sets of samples, L falls 
in the early stages of deformation from its isotropic value 
to a level which then remains fairly constant at about 200 A. 
The discontinuous change in L is another indication of the 
break-up of the initial morphological structure and has been 
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Figure 2 The density of extruded (o) and drawn ( I )  samples as a 
function of the deformation ratio 
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well discussed by previous workers. It is known that L de- 
pends primarily on the temperature of deformation. Our 
results are in keeping with this observation since, at a given 
deformation ratio, we always observe a higher value of L 
in the extruded material than in the drawn material. 

Dynamic mechanical behaviour 
The variation of the axial storage modulus, E' ,  and the 

corresponding loss factor, tanSE, with temperature are 
shown in Figures 3 and 4 for the extruded samples. 

Curves of E'  against temperature for specimens of diffe- 
rent deformation ratio are similar in shape. All show the 
two low temperature plateau regions on either side of the 
7-relaxation, and the rapid drop in E' with temperature 
above -50°C due to the onset of the c~-relaxation process. 
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Figure 3 The storage modulus E' at 3.6 Hz as a function of tem- 
perature for extruded samples of Rigidex 50. For clarity the data 
points are shown for the isotropic sample only. Numbers on the 
solid curves indicate the deformation ratio. A, 25; 8, 20; C, 15; 
D, 10.2; E, 5.18 

Table I Summary of the X-ray diffraction and dynamic mechanical data for samples of highly oriented linear polyethylene. (E/E c is calculated 
assuming E c = 255 GPa s) 

Long Crystal Modulus at E 
Type of Deformation Period, L length, Doo2 - 5 0  ° C, E 
sample ratio (A) (A) (GPa) p E c 

Extruded 5.2 205 228 17 0.053 0.067 
Rigidex 50 10.2 210 247 38 0.081 0.149 

20 215 349 78 0.238 0.306 

Drawn 9 185 240 32 0.129 0.123 
Rigidex 50 19 190 410 84 0.367 0.329 

30 198 464 112 0.402 0.439 
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Figure 4 The mechanical loss factor, tan8 E corresponding to the 
data of Fig. 3. Curves have been shifted vertically for clarity. A, 25; 
B, 20; C, 15; D, 10.2; E, 5.18 

This behaviour is qualitatively similar to that reported for 
many other samples of LPE of widely differing morphology. 
With the present samples the rate at which E'  falls off with 
temperature in the a region decreasessomewhat at higher 
deformation ratios. 

The shape of the a and 7 loss peaks in tanSE is fairly 
similar for all deformation ratios, the changes which occur 
with increasing deformation ratio being of a secondary 
nature. The intensity of the ~,-relaxation initially increases 
slightly and then falls off slowly with increasing deforma- 
tion ratio, the relaxation process becoming spread out over 
a wider temperature range and moving to a lower tempera- 
ture. The "},-process is generally acknowledged to contain 
components due to both the amorphous and crystalline 
phases, of which the former predominates. The slight initial 
increase in intensity may therefore be associated with the 
drop in crystallinity which occurs in the early stages of 
deformation. 

The broadening of the ~,-relaxation with increasing de- 
formation ratio probably indicates an increase in the 
variety and amount of crystalline disorder. 

The high temperature a-process also moves to a slightly 
lower temperature and decreases in intensity, although it 
shows no sign of disappearing, even in the most highly 
oriented samples. 

The dynamic tensile behaviour of the drawn samples is 
similar to that of the extruded samples. The main features 
were reported in a previous publication where a range of 
samples was prepared by different preparation procedures*. 

The plateau regions which occur in E'  will be referred 
to as regions 1 and 2. Region 1 refers to the plateau which 
occurs at -50°C (at the present measurement frequency) 
and region 2 refers to the plateau below the 3,-relaxation. 
Although the ~'-relaxation extends somewhat below the 
low temperature limit of the apparatus using liquid nitro- 
gen as a coolant, the value of Era t  -150°C will be taken 

as representative of the region 2 plateau modulus. 
Because the temperature and frequency dependence of 

mechanical behaviour is lowest in the plateau regions, the 
values of E' in these regions are useful quantities for 
characterizing the material since they are minimally depen- 
dent on the type of measurement technique used. The 
room temperature modulus, on the other hand, although 
significant from a practical engineering viewpoint, also re- 
flects shifts in the position and intensity of the e process 
and can therefore be less easily related to structural para- 
meters. 

Values of the storage modulus in plateau regions 1 and 2 
and at room temperature are plotted as a function of defor- 
mation ratio in Figure 5. It is seen that for a given defor- 
mation ratio drawn samples exhibit a slightly higher modu- 
lus than extruded samples. This is primarily a reflection of 
the higher temperature at which the extrusion process was 
performed. 

DISCUSSION 

Structural considerations and a morphological model 
Considering the likely structural features of these highly 

deformed LPE samples it is necessary to reconcile two im~ 
portant experimentally observed facts: (a) At high defor- 
mation ratios the material retains a periodic density fluc- 
tuation as indicated by the SAXS patterns; (b) The average 
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Figure 5 The storage modulus as a function of deformation ratio 
at room temperature and in the plateau regions I and 2. ([3, O A) 
refer to extruded samples and (n I i )  to drawn samples: [3 room 
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Figure 6 A schematic representation of the structure of the crys- 
tall ine phase of highly oriented linear polyethylene 

value of the c direction crystal thickness, 9002 increases 
with increasing deformation, and, more importantly, this 
quantity is consistently greater than the SAXS long period, 
L. 

The structural model which we propose to explain these 
observations is shown schematically in Figure 6. For con- 
venience the polymer backbone chains are represented by 
lines, and only the part of the material which is crystalline 
(from an X-ray diffraction viewpoint) has been shown. 

This morphology may be regarded equally well as con- 
sisting of fibrillar stacks of crystallites, linked by inter- 
crystalline bridges (as proposed by Fischer et al. t2), or as a 
continuous crystal containing disordered regions which are 
periodic in the c direction. In either case, the crystalline 
phase is essentially continuous in the c direction, the degree 
of continuity increasing with increasing deformation ratio. 

It is likely that the high mechanical stiffness of these 
materials is due primarily to crystalline continuity rather 
than to the presence of taut tie molecules. Undoubtedly, 
such entities exist, along with tight and loose chainfolds 
and all the other components which make up the amorphous 
phase in semicrystalline polymers, but at temperatures 
above that of the primary dispersion of the amorphous 
phase, it is highly unlikely that they contribute significantly 
to mechanical behaviour. Quantitative evidence for this will 
be presented later in our discussion of mechanical beha- 
viour. At temperatures above that of the 7-relaxation, 
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therefore, the mechanical behaviour probably approximates 
to that of a continuous crystal containing voids. 

The lateral distance over which the structure shown in 
Figure 6 retains its periodic register is probably of the same 
order as the quantities 9200 and 9020 described in ref 5, 
i.e. about 110 .~. 

It should be borne in mind that 9002 is in fact an aver- 
age value, since there is likely to be a distribution of crystal 
lengths in the c direction. In making an interpretation of 
the mechanical behaviour in terms of the structure it would 
be useful to have information about the distribution of 
crystal lengths and also about the distribution of inter- 
crystalline bridges across the disordered interface. This type 
of information is not available at present, but an attractive 
alternative is to proceed on the basis that the intercrystalline 
material is randomly dispersed. 

Consider a chain within the crystalline phase and let p 
be the probability that this chain will traverse the disordered 
region to enter an adjacent crystallite, p therefore repre- 
sents the area fraction of intercrystalline bridge material 
which traverses the disordered layer. The probability that 
a particular crystalline sequence will link n blocks is then: 

fn = pn- l (  1 - P) (3) 

since the sequence must traverse n - 1 boundaries and fail 
to traverse one boundary, fn also represents the number- 
fraction of crystalline sequences which link n crystallites. 
The above argument is analogous to the well-known treat- 
ment of polymerization by a stepwise condensation reac- 
tion 13. 

The weight fraction of chains, Fn, which link n crystal- 
lites can be obtained by multiplying fn by the sequence 
length and renormalizing. If the thickness of the disordered 
region (Figure 6) is xL,  then the length of a chain linking n 
crystallites is (n - x )L ,  and Fn is given by: 

(n - x)Lfn (n - x )pn - l (1  - p)2 
F n = = (4) 

,,. 1 - x ( 1  - p )  

L (n - x)Lfn 

n=l 

Since the integral breadth of the 002 reflection essentially 
measures a weight-average chain length (see Appendix I) 
then: 

9002 = ~ F n ( n -  x )L  

n=l 

(5) 

We do not know the value of x,  but if we ignore the 
thickness of the disordered region and assume x < 1 then 
equations (4) and (5) simplify to: 

Fn = npn-l(1 _ p)2 (6) 

and 

9002 1 + p 

L 1 - p  
(7) 

Equation (7) is the basis of our estimation ofp  from the 
X-ray data of ref 5, since rearrangement gives: 
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Values o fp  calculated on this basis* have been included 
in Table 1, where it can be seen that p increases with defor- 
mation ratio from 0.053 in the case of  the lowest deforma- 
tion ratio extruded sample up to 0.402 in the case of the 
30:1 drawn sample. 

It is seen intuitively that the parameter p is a suitable 
normalized measure of crystalline continuity, the value of 
which would vary from zero for a sample with a perfect 
series arrangement of phases up to unity for the perfect 
crystal. 

Figure 7 shows a distribution of crystalline sequence 
lengths calculated from equation (6) assuming that p = 0.4. 
It is apparent that less than half of the crystalline phase is 
in the form of short (n = 1) lamellar crystals. Of the rest, 
there are significant amounts at lengths of up to about 
n = 5 (i.e. about 1000 A) but no chain-extended material. 

Interpretation of mechanical behaviour: general 
considerations 

Present understanding of the relationship between mecha- 
nical properties and structure in crystalline polymers is only 
at the semiquantitative stage. This is due primarily to the 
high mechanical anisotropy of the crystalline regions, 
which makes the overall mechanical behaviour extremely 
sensitive to the shape and disposition of the crystalline 
phase. This is shown in the present case by the large in- 
crease in stiffness which takes place at deformation ratios 
greater than I0. Above this deformation ratio, the crystal- 
line phase can be regarded as perfectly oriented, and the 
density changes only by a small amount, so the large 
change in modulus must be due to a change in the topology 

* As an alternative to the simplifying assumption (x ~ 1) which 
led to equation (7) it is possible by observing that the volume frac- 
tion crystaUinity is 1 - (1 - p)x, and by using crystallinity values, 
say from density, to obtain p by solving equations (4) and (5). 
However the values obtained by this method axe fairly similar to 
those from equation (8) so the simpler method was adopted for 
brevity. 

rather than a change in orientation or concentration of this 
phase. 

It is necessary to mention at this point a previous 
attempt 4 to model the mechanical behaviour using the well- 
known Takayanagi model 14. Using values for the concen- 
tration of the amorphous fraction determined from broad 
line nuclear magnetic resonance (n.m.r.) is measurements 
it was possible to explain the mechanical behaviour of 
drawn samples of LPE in terms of a series arrangement of 
phases, the increase in stiffness being attributed to a de- 
crease in concentration of the mobile fraction. 

In this modal the crystalline phase was not regarded as 
being continuous. Recent more extensive n.m.r, measure- 
ments, however, have shown that a large decrease in mobile 
fraction is not a general feature of the drawing behaviour 
of LPE. Moreover, the results of a number of other mea- 
surements indicate that an increase in crystalline continuity 
provides a better explanation for the observed changes in 
properties. 

We have, for instance, undertaken thermal conductivity 
measurements on hydrostatically extruded materials 16 and 
have shown that the high axial thermal conductivity which 
develops on tensile deformation is consistent with art in- 
crease in crystalline continuity, i.e. an increase in the frac- 
tion of intercrystalline bridge material. 

More recently, X-ray diffraction measurements of crystal 
strain in drawn materials under load, a preliminary account 
of which has already been published 17, and which are des- 
cribed in detail in the accompanying paper s provide defini- 
tive evidence that the series type of model is incorrect for 
LPE, and indeed the room temperature crystal strain re- 
suits would be more consistent with a 'constant strain' or 
parallel model. 

As mentioned already, the average crystal thickness can 
increase to a value which is several times the long period, 
but nevertheless the material does not contain any siguifi. 
cant amount of extended-chain material, so the material 
behaves as a network of highly anisotropic crystals of 
various lengths. These considerations lead us to consider 
the relevance of a model based on an aligned fibre compo- 
site material. More specifically, we shall seek to show how 
the intercrystalline bridge content, p, estimated on the 
basis of the model described, can be used to provide a di- 
rect link between mechanical properties and structure. 

Mechanical behaviour of  the proposed morphological model 
in terms of  composite theory 

Halpin and Kardos la suggested that partly crystalline 
polymers are similar to composite materials where a fibrous 
filler is dispersed in a matrix of lower stiffness. The in- 
crease in Young's modulus on tensile deformation can then 
be attributed to an increase in the aspect ratio of the crystal- 
line regions which act as the Filler. Halpin and Kardos pro- 

19 posed the use of the Halpin-Tsai equation , which con- 
tains a parameter related to the aspect ratio of the rein- 
forcing phase. 

A fundamental problem when attempting to apply com- 
posite theory to a polymeric material is one of deciding 
what constitutes the 'fibre' and 'matrix' in the structural 
analogue. A simplistic approach would be to equate the 
crystalline and amorphous phases with the fibre and mat- 
fix. This approach has been used with a degree of success 
for low crystallinity polymers where the amorphous phase 
is clearly the continuous phase, but the morphological evi- 
dence in the case of ultra-oriented LPE tends to indicate 

688 POLYMER, 1978, Vol 19, June 



I 1 

Figure 8 The assumed mechanical connectivity of the fibre phase 
(A) lamellar phase (B) and amorphous phase (C) of highly oriented 
LPE 

that the crystalline phase is continuous in this material, so 
the problem warrants further consideration. 

For the present case, where the material is known to 
contain highly oriented crystalline sequences of various 
lengths, it seems more appropriate to draw an analogy with 
an aligned fibre composite. Cox 2°, Dew 2x and Rosen 22 have 
all proposed theories for the stresses in discontinuous fibres 
incorporated in a relatively soft matrix. There are some 
inconsistencies between the different approaches, but all 
three workers consider that in the vicinity of each fibre end 
the fibre tensile stress fails to zero, load being transferred 
by shear to the matrix. The original version of 'shear lag' 
theory, as it has become known, will be mentioned here 
by way of illustration. 

Using Cox's theory, the modulus of an aligned short 
fibre composite is given by: 

tanh B] 
+ Em Vm (9) E= EfVf 1 B 

where E/'and Em are the Young's moduli of fibre and mat- 
rix components, respectively, whose volume fractions are 
Vf and I'm. The quantity B is given by: 

[Om] 1,2{ 1 /1,2 
8 =  ln[2= 3Ff)l/2] (10) 

where 1/and df are the fibre length and diameter and Gm 
is the shear modulus of the matrix phase. 

This expression shows that the composite behaviour is 
determined by three factors: (i) the aspect ratio of the re- 
inforcing phase; (ii) the ratio Gm/Ef; (iii) the fibre volume 
fraction. 
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For convenience we will define a 'shear lag' factor, ~, 
where: 

tanh B 
= 1 - - -  (11) 

B 

so the composite modulus is given by: 

E = EfVffk + Em I'm (12) 

In the following discussion the mechanical behaviour 
will be described in terms of the shear lag factor. We are 
not relying specifically on the validity of Cox's model, 
since the other models also give expressions like equation 
(12) for the overall modulus. 

Equation (12) is seen to be similar to the familiar 'uni- 
form strain' expression, but with the fibre term modified 
by the factor ~ to allow for the finite aspect ratio of this 
phase. ~ can be regarded, therefore, as an efficiency factor 
for the reinforcing phase. Alternatively we may invoke the 
concept of 'ineffective length', observing that a fraction 
(1 - ¢) of the reinforcing phase is ineffective in transmit- 
ting stress, there being an 'ineffective length' of (1 - ~)lf/2 
at the end of each fibre. 

It is to be expected that only those crystalline chains 
which cross interlamellar boundaries will contribute sig- 
nificantly to mechanical stiffness, so the 'matrix' may be 
regarded as consisting of a mixture of chain-folded and dis- 
ordered material. This arrangement is shown schematically 
in Figure 8, where the concentration, Vf, of the fibre phase 
is identified with that of the crystalline sequences where 
n > 1. The main difficulty with this type of approach, ad- 

23 vocated independently by Barham and Arridge and by 
Gibson 6 is that the increase in stiffness which occurs as a 
result of tensile deformation can be interpreted as being 
due either to an increase in lf/d/or to an increase in V/. 
Another problem with models based directly on theory for 
short fibres is that a single fibre aspect ratio is assumed, 
when in fact a distribution of aspect ratios is more likely 
as already mentioned. It is also difficult to envisage how 
'fibres' consisting of perfectly crystalline material could 
increase in aspect ratio as a result of tensile deformation. 

In the present model, increases in length of and amount 
of 'fibre' phase are interrelated so composite theory con- 
clusions can be made which are compatible with the X-ray 
data already discussed. 

It should be emphasized that we do not envisage the re- 
inforcing fibre phase as discreet identifiable entities which 
retain their identity throughout the drawing process. At 
each stage of the deformation there is a degree of crystal 
continuity which can be represented by an apparent fibrillar 
content. Although we do not discuss here the mechanisms 
leading to the formation of the proposed morphology, we 
consider that they are probably similar to those originally 
outlined by Peterlin ~. 

If we treat each chain which links at least two lamellae 
as a reinforcing fibre then the volume of the fibre phase 
Vf and the lamellar (n = 1) phase, Vl are given by: 

vr=× F.=×p(2-p) 
n=2 

(13) 

Vl = xF1 = X(1 - p)2 (14) 
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Figure 9 A comparison between the experimental data at -5O°C 
and the predictions of equation (20). O extruded samples, • drawn 
samples. Broken line ×@' = 0.77, solid line ×@' = 0.6 

and equation (12), modified to take account of the dis- 
tribution of fibre lengths, becomes: 

E=XEc ~ Fnd~n + ( ( 1 - X ) + x F 1 } E m  (15) 

n=2 

where ~bn is the shear lag factor for chains of length nL, Ec 
is the tensile modulus of the perfect crystal and X is the 
volume crystallinity. 

It is convenient to define an average shear lag factor @' 
such that: 

E = ×(1 - F1)Ec$' +EmVm (16) 

hence ~b' - 1 ~ Fn~n - 1 l - F 1  p(2-p~) ~ Fn@n (17) 
n=2 n=2 

Also, considering Figure 8, it is reasonable to assume 
that the matrix extensional modulus, Era, may be obtained 
by a series addition of the two components. Hence: 

X ( 1 - p ) 2 + ( 1 - X )  X ( 1 - p ) 2  ( l - x )  
- + - -  (18) 

Em E, E,, 

Finally we obtain an expression for the sample modulus, 
combining equations 13-18 to yield: 

E {(1 - X) + X(1 - p ) 2 }  Ea/Ec 
- -  = × p ( 2  - p)@' + ( 1 9 )  
Ec (1 - X) + X(1 -p)2Ea/Ee 

An important aspect of equation (19) is that as the ratio 
Ea/Ec tends to a low value, the second term, representing 
the tensile contribution of the matrix to the overall stiff- 

ness becomes small compared with the first. It will later be 
argued that at temperatures above that of the 7-relaxation 
this is the case, and behaviour is dominated solely by the 
crystalline 'fibre' term, equation (19) reducing to: 

E 
- -  = Xp(2 - p)¢' (20) 
Ec 

Comparison of experimental and theoretical moduli 
In comparing the theoretical and experimental moduli 

it is tempting to analyse the room temperature data. As 
mentioned previously, however, this is undesirable as the 
material is viscoelastic at room temperature and low fre- 
quencies (say <100 Hz) and the room temperature modulus 
is therefore strongly affected by the shifts in the position 
and intensity of the a process which occur on deformation. 
We have concentrated instead on the behaviour in the plateau 
region 1 around -50°C, where the material is essentially 
elastic at all frequencies of interest and where the modulus 
shows only a weak dependence on temperature and frequency. 

The experimental moduli at -50°C, normalized to the 
form E/Ec (assuming Ec = 255 GPa), have been added to 
Table 1, where it can be seen that, like the parameter p, they 
increase systematically with increasing deformation ratio 
for the two sets of samples. Figure 9 shows that there is a 
good correlation between E/E c and p for the two sets of 
samples. 

The comparison between the experimental moduli and 
the values predicted by equations (19) or (20) is complicated 
somewhat by the problem of deciding upor realistic crystal- 
linity values for the samples. On the one hand, density 
measurements (assuming the customary two phase model) 
indicate a figure o f "0 .77  whilst the crystal strain measure- 
ments s suggest a figure as low as 0.60 for drawn samples of 
intermediate draw ratio, rising to 0.70 for the most highly 
drawn sample. 

To some extent this problem is artificial in that if we 
assume the lower value for crystallinity then the 'amorphous' 
phase has to have a higher density than that usually assumed 
and it will probably be relatively highly oriented. Bearing 
this in mind, it is now necessary to consider the validity of 
the approximation Ea ~ Ec made in the last section and 
which led to equation (20). 

If the matrix contribution to the tensile modulus is in- 
significant at -50°C, then extrapolation of the data in 
Figure 9 to p = 0, corresponding to a 'parallel lamella' struc- 
ture with no crystalline continuity, should give a near-zero 
value ofE/E c. Examining the actual points, this condition 
does appear to be satisfied. Taking account of experimental 
scatter, the data could quite reasonably be considered to 
pass through the origin. A maximum reasonable value for 
the intercept would be about 0.05, so we may safely say 
that Em <0.05 Ec. Since, at very low values o fp  me matrix 
modulus approaches a value ofEa/(1 - X) we may estimate 
that Ea <0.02 Ec. 

Our approximation seems, therefore, to be adequately 
justified and our previous claim that the disordered regions 
function as voids at -50°C and above can be upheld. 

We now return with confidence to equation (20) which 
predicts that the stiffness is directly proportional to the 
product X¢'. The fit obtainable from equation (20) is illus- 
trated by the two lines in Figure 9 which were calculated 
for X¢' = 0.77 (broken line) and X@' = 0.60 (solid line), the 
latter being the better fit to the data. We can therefore con- 
clude that the behaviour at -50°C lies somewhere between 
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the following extremes: (1) crystallinity is 0.6 and 'shear 
lag' effects at -50°C are insignificant (i.e. ~' = 1); (2) crys- 
tallinity is 0.77, but shear lag reduces the effectiveness of 
the reinforcing phase (~' = 0.6/0.77 = 0.78). 

Shear lag effects, therefore, are only of secondary impor- 
tance in determining the modulus at -50°C,  and the modulus 
increase with increasing draw ratio can be attributed mainly 
to the large increase in the term Xp(2 - p), which in turn 
is primarily due to an increase in p. We have arrived at a 
fairly simple picture of the situation in which modulus is 
primarily determined by the volume, Vf, of the fibre phase. 
The matrix contributes an insignificant amount to the ten- 
sile properties, but it has sufficient resistance to shear to 
transfer the stress efficiently from fibre to fibre. The dis- 
cussion can profitably be carried forward further to con- 
sider the respective roles of the lamellar crystals (n = 1) and 
amorphous material. 

Calculations, based on measurements of shear modulus as 
well as tensile modulus, show that the shear modulus of the 
matrix at -50°C is primarily determined by the lamellar 
material. These results, which will be reported in detail 
elsewhere 2s, indicate that the stress transfer in shear takes 
place predominantly via the crystalline component. 

Interpretation of  7 and a relaxation processes 
A useful aspect of the composite theory approach is that 

it offers some fairly straightforward interpretations of the 
a and 3' relaxations in these materials. The modulus change 
in the low temperature 7 region, can be primarily attributed 
to a substantial change in the tensile modulus of the amor- 
phous phase. This comes from the following considerations. 

Variations in Ec over the temperature range in question 
are likely to be small, as has been confirmed by crystal 
strain measurements on an annealed sample s . We have al- 
ready shown that at -50°C the lowest reasonable value of 

is 0.78, so the fibre term in equation (19) is capable of 
a 28% increase at the most when going from - 5 0  ° to -150°C. 
It is likely, therefore, that the greater part of the stiffness in- 
crease in the 3' region is due to the 'matrix' term in equation 
(19) becoming significant. We can determine the approxi- 
mate value of Ea at -150°C from the sample modulus 
change between - 5 0  ° and -150°C. If we neglect the effect 
of changes in ¢' and assume that X = 0.6 we find that Ea/Ec 
at - 1 5 0  C changes from ~0.1 for the lowest deformation 
ratio up to ~0.2 for the highest deformation ratio. Changes 
in ¢' have a greater effect at higher deformation ratios 
where the fibre term is larger, and if allowance is made for 
such changes, the estimate of Ea[E c at higher deformation 
ratios is reduced somewhat. Nevertheless, it does appear 
that the value of Ea increases with increasing deformation, 
which is in keeping with the increase in amorphous orien- 
tation observed in broad line n.m.r, measurements n. It is 
noted in passing that the maximum estimate ofEa, 51 GPa, 
is very high for an oriented polymer phase in the glassy state. 

The second order effect, the increase in ~b', can be ex- 
pected to have two components due to the change in shear 
moduli of the amorphous and lamellar (n = 1) crystalline 
components, both of which will affect Gm. It is necessary 
to make some allowance especially for the latter effect: 
since we have discounted variations in Ec, the crystalline 
component of the 3' relaxation can only operate through 
changes in the matrix shear modulus. This effect probably 
accounts for the small residual slope of the modulus-  
temperature plot below the main 3' relaxation as well as the 
broad background observed in tanfE. 
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Turning now to the cx-process, the approximation that 
E a ~ E c can be made with confidence in this temperature 
region. The fall in sample modulus can only be due, in 
terms of the model to a fall in the value of ~' which in turn 
indicates a fall in the matrix shear modulus. The calcula- 
tion of $' from first principles is, however, quite difficult 
in view of the complicated sample morphology. Within the 
confines of the present model one may assume a constant 
ineffective length mL, say, irrespective of the fibre length. 
We may then calculate ¢n from: 

n - m  
~b n = - - -  (n > 2m) (21) 

n 

For short fibres in which the maximum stress of a long 
fibre is never reached, a simple triangular stress profile may 
be assumed with a stress decay rate equal to the maximum 
stress attained in a long fibre divided by the ineffective 
length. This yields: 

¢n = (n < 2m) (22) 
4m 

The details of this latter calculation are not important at 
high values o fp  since the modulus is mainly dependent upon 
the concentration of long fibres. 

Calculations of ~' on this basis show that the room tem- 
perature data for the highest deformation ratio samples may 
be fitted with a value of m of the order of one, thus indicat- 
ing an ineffective length of about 200 ./~ in these samples. 
Most of the stress transfer between fibres therefore occurs 
through the crystal lamellae in which one fibre ends and 
another begins. The decreasing value of ~' with increasing 
temperature is consistent, therefore, with the interpretation 
of the o~ process as a crystal shear process. It is only at the 
highest temperatures where m is much greater than 1 that 
we need to consider the problem of determining the shear 
modulus of the matrix phase. 

In the a-region, the composite model has a distinct ad- 
vantage over the previous models involving only tensile 
moduli because it shows how the overall tensile behaviour 
is a reflection of the shear behaviour of the matrix. This 
may go some way to explaining the qualitative similarity of 
the a peaks in tan6E in LPE samples having widely differing 
morphologies. 

Application to crystal strain measurements 
In the accompanying publication s the apparent crystal 

modulus, E~cPP, has been measured by dividing the sample 
stress by the crystalline strain measured by X-ray techniques. 
It is of interest to show that E~PP can be calculated on the 
basis of the model described here. To do this, we note that 
the shear lag factor represents the ratio of the mean strain 
in the fibre phase, ~f, to the applied strain, e, so we may 
write: 

~-[ = ¢'e (23) 

The mean strain in the lamellar phase, ~ is calculated by 
noting that the average strain in the series-connected lamel- 
lar and amorphous phases is equal to the applied strain, e. 
A little algebra soon yields: 

= e{ (1  -- X) + X(1 - - p ) 2 ) E a / E c  (24)  

(1 - X) + X(1 - p)2Ea/Ee 
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Figure 10 The apparent crystal modulus as a function of Ea/E c as 
predicted by equation (24) for different values of p, assuming 
~' = 1 : A ,p  = 0.1, B , p  = 0.2; C,p = 0.5 

The mean crystal strain, ec, is therefore given by: 

ec = V/fit'+ V/~ (25) 

which, with the appropriate substitutions, may be written: 

e-c = p(2 - p)q~' + (1 - p)2{(1 - X) + X(1 - P)2}Ea/Ec 

e (1 - ×) + X(1 - p)2Ea/Ec 
(26) 

But ~c pp = o/e c where ~ is the sample stress which 
may be written in terms of the sample modulus and strain. 
Hence: 

o e 
E~cPP --" _-- =E_--- 

ec ec 

L~cPP E e 
and 

/rc 

Combining equations (19) and (26) we obtain: 

xp(2  - p ) 4  + 
E~cPP 

{(1 - X) + X(1 - p)2}Ea/Ec 

(1 -- X) + X( 1 - P)2Ea/Ec 

E c (1 - p ) 2  {1 - X) + X(1 -P)2}Ea/Ec 
p(2 - p)~' + 

(1 - X) + X(1 -p)2Ea/Ec (27) 

We note that as Ea/Ec tends to zero, EaePP/Ec tends to X, 
whereas as Ea/Ec tends to 1, then EacpP/Ec also tends to 1. 
The detailed behaviour between these limits depends upon 
p and ~' as shown in Figure 10, where a crystallinity of 0.6 
is assumed in keeping with the general trend of the results 
of ref 5. For simplicity a value of ~' of 1 is assumed which, 
as discussed, is approximately true for data below -50°C. 
Figure 10 compares well with the crystal modulus measure- 
ments s as a function of temperature for samples of different 
deformation ratio if we associate increasing Ea/Ec with de- 
creasing temperature and increasing p with increasing defor- 
mation ratio. We note that the main features of the crystal 
strain measurements can be interpreted without involving 
considerations of shear lag. 

CONCLUSIONS 

A correlation between the tensile modulus and the average 
longitudinal crystal thickness has been shown to exist in 

samples of ultra-oriented polyethylene. Structural studies 
suggest that such samples consist of lameUar stacks of 
crystallites linked by intercrystalline bridges, the concen- 
tration of which has been estimated from X-ray diffraction 
data reported in the related publication s. A quantitative 
model has been proposed which treats the portions of the 
sample which are linked by intercrystalline bridges as the 
fibre phase in a fibre reinforced composite material. The 
major feature of this model is that the modulus at -50°C 
is determined primarily by the total amount of fibre phase 
which is a strong function of deformation ratio. 

In addition, the model incorporates 'shear lag' effects 
which are shown to be significant at room temperature, and 
lead to a satisfactory modelling of the a process as a crystal 
shear process. The 7 process is seen primarily as a change 
in the tensile modulus of the amorphous phase, with secon- 
dary shear lag effects. 
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APPENDIX I 

Integral breadth of the 002 reflection 
If we consider a single chain of r repeat units we may 

compare its behaviour with a finite diffraction grating with 
r slits. The intensity of a diffraction maximum is propor- 
tional to r 2 and the width is proportional to r -1 hence the 
area is proportional to r. 

The integral breadth, r,  is defined as the peak area divided 
by the height and is therefore proportional to r -1. 

If we have an assembly of chains of different length, with 
Nr chains containing r repeat units, then the resultant diff- 
raction maximum profile will depend upon whether the 
chains diffract coherently or incoherently. Say that, in 
general, mr of the Nr chains form a coherently scattering 
group, then the intensity of the diffraction maximum for 
these chains, Ir is given by: 

AL 
I r o: -'" (mrr)2 (A1) 

mr 

This is because the maximum scattered intensity from a 
single group of coherent scatterers is proportional to (m~r) 2 
and we have Nr/mr such groups. The integrated area is, 
however, independent of mr being merely proportional to 
Nrr, i.e. the total number of scatterers. 

We may readily generalize to an assembly of chains of 
different lengths if we assume that chains of different 
length scatter incoherently. We then merely have to add the 
scattered intensities to obtain the maximum intensity. The 
total integrated area is always proportional to the total 
number of scatterers. Hence, 

oo  

(Nr/mr(m, r)2 

r~l 
~-1 = (A2) 

oo  

r=l 
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that is: 

o o  

~ Nrm/.r 2 

/.=1 

o o  

 Nrr 
/'=1 

(A3) 

Basically, mr describes the lateral width of  the cluster of 
chains and its dependence on r describes the shape of  the 
crystals, e.g. for cubes mr would be proport ional  to r 2. In 
an essentially fibrillar texture it is reasonable to assume that 
mr is independent of  r. We may therefore remove it from 
the sum and obtain: 

r=l 
/3-1 ~ - -  (A4) 

/.=1 

In this instance we are interested in a model in which 
only certain values o f r  are allowed, i.e. those which corres- 
pond to chain lengths which are integral multiples of L,  the 
low-angle repeat distance. We may therefore change from a 
sum over r to a sum over n where nL is the length of  a chain 
to which the index n refers. I f  we also use the number frac- 
tions fn of chains, rather than the total number,  we obtain: 

n=l 
/3 - 1  = =, (A5) 

n=l 

Noting that  the weight fraction Fn is essentially propor- 
tional to nfn and that the length of  a chain In is given by 
nL, we may write: 
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F.In 
n=l 

13-1 ~ _ _  (A6) 
o c  

n=l 

The inverse integral breadth therefore essentially measures 
a 'weight-average' chain length rather than a number-average 
if the assumptions made in this Appendix hold. These 
assumptions are strictly valid for a randomly placed assem- 
bly of  parallel rod-like crystals of  constant area which is 
similar to the proposed structure of the highly oriented 
polymers. 
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